
I C A S E  
A SPLINE BASED TECHNIQUE FOR COMPUTING RICCATI OPERATORS 

AND FEEDBACK CONTROLS IN REGULATOR PROBLEMS FOR DELAY EQUATIONS 

H. Thomas Banks 
I. Gary Rosen 
Kazufumi Ito 

( N A S A - C R - 1 8 5 8 1 1 )  A SPLINE BASED TECHNIQUE 
FOR COMPUTING RICCATX OPERATORS AND FEEDBACK 
CONTROLS I N  REGULATOR PROBLEMS FOR DELAY 
EQUATXOMS ! I C A S E )  5 2  p 

Report No. 82-31 
September 29, 1982 

N09-71364 

INSTITUTE FOR COMPUTER APPLICATIONS - I N  SCIENCE AND ENGINEERING 
'NASA Langley Research Center, Hatnpton, V i r g i n i a  23665 

Operatcd by the 

UNIVERSITIES SPACE @ RESEARCIl ASSOCIATION 



A SPLINE BASED TECHNIQUE FOR COMPUTING RICCATI OPERATORS 

AND FEEDBACK CONTROLS I N  REGULATOR PROBLEMS FOR DELAY EQUATIONS 

. 
* 

H. Thomas Banks 
8 w n  Unive/~6&j 

I. Gary Rosen 
Bowdoin CoUege 

Kazufumi It0 
1nsA;ttu;te doh CompLcteh AppkXcaR;ions i n  Science and E n g i n e d n g  

ABSTRACT 

We consider t h e  i n f i n i t e  i n t e r v a l  regulator problem f o r  systems with 

delays. A s p l i n e  approximation method for computation of t h e  gain opera tors  
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1 . INTRODUCTION 

The problem o f  construct ing feedback con t ro l s  f o r  hered i ta ry  o r  delay 

systems i s  no t  new and there  i s  a ra the r  extensive l i t e r a t u r e  pe r ta in ing  t o  

several aspects o f  t h i s  problem. 

[24], Alekal, e t .a l .  [l], and sect ion 5 of Banks and Burns [5] f o r  accounts of 

some of the previous pe r t i nen t  resu l t s .  Among the fundamental e a r l  i e r  con- 

t r i b u t i o n s  are those o f  Krasovski i  [17], [18] (establishment o f  the func t i ona l  

form of optimal feedback f o r  delay systems and e a r l y  use of an "averaging" type 

approximation scheme), E l l e r ,  e t . a l .  [13] and Ross [24], [25] (de r i va t i on  o f  

R icca t i  type equations f o r  the feedback gains i n  the func t iona ls  and methods 

fo r  computing these gains), and Delfour [12] (convergence analysis o f  an 

"averaging" scheme f o r  approximate solut ion o f  an operator form o f  the R icca t i  

type equations f o r  the feedback gains). More recent ly,  Gibson [14] and Kunisch 

We re fe r  the reader t o  the surveys of Ross 

[19] have made important con t r ibu t ions  which we s h a l l  discuss i n  the context 

of our presentat ion below. 

Our own renewed i n t e r e s t  i n  feedback con t ro l s  f o r  delayed systems was 

motivated by problems a r i s i n g  i n  the design o f  c o n t r o l l e r s  f o r  a l i q u i d  

n i t rogen wind tunnel (the National Transonic Faci 1 i ty o r  NTF) c u r r e n t l y  under 

cons t ruc t ion  by NASA a t  i t s  Langley Research Center i n  Hampton, Va. 

wind tunnel i t  i s  expected t h a t  researchers w i l l  be able t o  achieve an order 

of magnitude increase i n  the Reynolds number over t h a t  i n  e x i s t i n g  tunnels 

wh i le  maintaining reasonable l eve l s  o f  dynamic pressure. 

peratures (the Reynolds number i s  roughly inverse ly  p ropor t iona l  t o  temperature) 

w i l l  be maintained a t  cryogenic l eve l s  by i n j e c t i o n  o f  l i q u i d  n i t rogen as a 

coolant i n t o  the airstream near the fan sec t ion  o f  the tunnel, I n  add i t i on  

t o  a gaseous n i t rogen vent t o  help control pressure, motor d r iven  fans w i l l  

With t h i s  

Test chamber tem- 
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be used as the  primary regulator  o f  Mach number. 

w i l l  be e f fec ted  through changes i n  i n l e t  guide vanes i n  the fan  section. 

Schematically, the  tunnel can be depicted as i n  Figure 1.1 

Fine cont ro l  o f  Mach number 

e: GNL LA, 
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F I G U R E  1.1 

The basic physical  model r e l a t i n g  states such as Reynolds number, pressure, 

and Mach number t o  cont ro ls  such as LN2 input,  GN2 bleed, and fan operat ion 

involves a formidable set of p a r t i a l  d i f f e r e n t i a l  equations ( the  Navier- 

Stokes theory) t o  describe f l u i d  flow i n  the  tunnel and t e s t  chamber. 

model has, no t  surpr is ing ly ,  proved t o  be very unwieldy from a computational 

viewpoint and i s  d i f f i c u l t ,  if not  impossible, t o  use d i r e c t l y  i n  the design 

This 
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of sophis t icated cont ro l  laws. 

needed f o r  e f f i c i e n t  operat ion of the tunnel - and t h i s  i s  a des i rab le goal 
6 since cost estimates for  l i q u i d  ni t rogen alone are $6.5 x 10 per year of 

operation.) 

con t ro l le rs ,  parameter est imat ion techniques w i l l  be useful once data from 

the completed tunnel i s  ava i lab le  (current inves t iga t ions  invo lve  use of data 

from a 1/3 meter scale model of the tunnel) .  

I n  view of the schematic i n  Figure 1.1, i t  i s  not  surpr is ing  t h a t  

(Both open loop and feedback c o n t r o l l e r s  are 

\ 
I n  add i t ion  'to the  design o f  both open loop and closed loop 

engineers (e.g., see [3] and [15]) have proposed design of con t ro l  laws fo r  

subsystems modeled by lumped parameter models ( the  var iab les represent values 

of s ta tes and con t ro l l e rs  a t  various d isc re te  locat ions i n  the tunnel and t e s t  

chamber) w i t h  t ranspor t  delays t o  account f o r  f low times i n  sect ions o f  the 

tunnel. A s p e c i f i c  example i s  the model [3] f o r  the Mach no. con t ro l  loop 

i n  which var ia t ions  i n  the Mach no. ( i n  the t e s t  chamber) are, t o  f i r s t  order, 

con t ro l l ed  by var ia t ions  i n  the i n l e t  guide vane angle se t t i ng  ( i n  the fan 

sect ion)  - i .e.,  6M(t) % se ( t - r )  where r represents a t ranspor t  t ime from 

the  f a n  sect ion t o  the t e s t  chamber. More prec ise ly ,  the proposed equation 

r e l a t i n g  the  v a r i a t i o n  6M (from steady s ta te  operat ing values) i n  Mach no. t o  

the  v a r i a t i o n  68 i n  guide vane angle i s  

T{M(.t) + sMLt) = kse( t - r )  

wh i le  the  equation r e l a t i n g  the guide vane angle v a r i a t i o n  t o  t h a t  6eA of an 

actuator  i s 

Rewri t ing the system i n  vector notat ion, one thus f inds t h a t  the Mach no. con t ro l  
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loop involves a regulator  problem f o r  the equation 

(1.1) i ( t )  = Aox(t)  + A1x(.t-r) + Bou(t) 

where x = (sM, 6 8 ,  s'e), u = deA. 

actuator  input .  A s im i l a r  4-vector system problem can be formulated i n  the  

case where one t r e a t s  the actuator  r a t e  66, as the cont ro l  - see [3], [ll]. 

We sha l l  re tu rn  t o  examples such as (1.1) f o r  the NTF i n  sec t ion  4 below where 

we present numerical resu l t s  obtained using the methods we propose. 

Here the cont ro l  i s  the  guide vane angle 

Several recent cont r ibut ions t o  the l i t e r a t u r e  on numerical methods fo r  

delay systems prompt the techniques we present i n  t h i s  paper. A ra the r  complete 

convergence analys is  (along w i t h  numerical r e s u l t s )  o f  the so-ca l led "averaging" 

scheme appl ied t o  open loop con t ro l  problems f o r  delay systems was given i n  

Banks and Burns [SI. The analys is  was based on approximation r e s u l t s  for, 

l i n e a r  semigroups invo lv ing  the Trot ter-Kat0 theorem (a func t iona l  a n a l y t i c  

version of the Lax Equivalence theorem: consistency p lus  s t a b i l i t y  impl ies 

convergence). 

can be used t o  develop a convergence theory f o r  approximations o f  the feedback 

gains based on the "averaging" techniques. 

"averaging" methods f o r  delay systems (which r e s u l t  i n  e s s e n t i a l l y  f i r s t  order  

numerical schemes), Banks and Kappel [9] developed higher order  approximation 

schemes based on spl ine approximations. 

[8], [9]) these methods have proven super ior  computat ional ly t o  the popular 

"averaging" techniques. I n  t h i s  paper we show how one can use sp l i ne  based 

computational schemes t o  obta in  the gains i n  the feedback c o n t r o l l e r s  f o r  

delay systems. We present a summary of our numerical f ind ings w i th  these 

methods which support the ef f icacy of the proposed schemes. 

Gibson [14] and Kunisch [19] have shown t h a t  these same t o o l s  

Subsequent t o  the  development of 

I n  numerous s i t u a t i o n s  ([4], [ S I ,  [71, 



Our presentation i s  as follows: In sect ion 2 we summarize those fac ts  

from the l i t e r a t u r e  on delay systems needed t o  discuss and develop our approx- 

imat ion techniques. Section 3 i s  then devoted t o  a ca re fu l  explanat ion o f  

the proposed schemes, hopefu l l y  i n  s u f f i c i e n t  d e t a i l  t o  permit  readers t o  

develop t h e i r  own computational. packages should they so desire. We r e p o r t  on 

our numerical experience w i t h  the spl ine based schemes i n  sect ion 4 where we 

a lso  compare our f indings t o  those obtained using the "averaging" methods. 

F i n a l l y  we discuss b r i e f l y  i n  sect ion 5 some o f  the theo re t i ca l  aspects of the 

sp l i ne  techniques. 

The no ta t i on  we use throughout i s  ra the r  standard w i t h  the fo l l ow ing  

exception. We s h a l l  be deal ing w i t h  vector systems but s h a l l  not  always make 

t h i s  precise when no loss o f  understanding resu l t s .  

n-vector valued func t ion  w i t h  components i n  the Sobolev space H1, we s h a l l  

simply w r i t e  x E H . 

For example, i f  x i s  an 

1 We sha l l  only use transpose no ta t ion  where i t  i s  

essent ia l ;  e.g., i f  Q, i s  an n .x n matr ix we s h a l l  w r i t e  xQox ins tead o f  the 

more conventional x Q,x. T 
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2. FEEDBACK CONTROLS FOR DELAY SYSTEM PROBLEMS 

I n  l i g h t  o f  the mot ivat ion above, we consider the con t ro l  problem o f  

f i n d i n g  an m-vector valued L2 con t ro l  which minimizes 

subject t o  the n-vector system 

(2.2) i ( t )  = Lxt + Bou(t) , t > O ,  - 

where Qo, R are symnetric n x n and m x m matrices, respect ively,  w i t h  Qo - > 0, 

R > 0, Bo i s  an n x m matrix, and J I  i s  an n-vector func t ion  w i t h  components 

i n  L2(-r,O) - (we denote t h i s  by JI E L;(-r,O)). Fol lowing standard notat ion,  

the symbol xt denotes the func t ion  e + x(t+e),  - r 5 e 5 0, and we assume the 

l i n e a r  operator L has the form 

V 0 

where 0 = ro < rl < ... < r = r, Aiy 
and D i s  an n x n mat r ix  func t ion  w i th  components i n  L2(-r,O). 

and the system (2.21, (2.3) can be given a proper i n t e r p r e t a t i o n  f o r  i n i t i a l  

data JI and controls u i n  L2 and, indeed, one can e s t a b l i s h  existence of a 

unique so lu t i on  x 6  H on any f i n i t e  i n t e r v a l  [O,T] where the equation (2.2) 

i s  s a t i s f i e d  i n  the usual Caratheodory sense ( i .e.,  almost a l l  t )  - see [9]. 

i = 0, 1, ..., V, are n x n matrices, 

This operator 
V 

1 

Assuming for the moment t h a t  a so lu t i on  t o  the above con t ro l  problem 

ex i s t s  i n  closed loop form, i t  can be shown (see [17], [14]) t o  have the form 
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where the m x n gain matrices s a t i s f y  ce r ta in  R i c c a t i - l i k e  systems o f  equations 

([13], [24], [l], [14]). C '  
Our goal here i s  t o  discuss numerical approximations 

* t o  KO and K1 which, when appl ied t o  (2 .2) ,  (2 .3 ) ,  (2 .4 ) ,  y i e l d  a near optimal 

performance. 

deal ing  w i th  feedback cont ro ls  .for a i n f i n i t e  dimensional s t a t e  system. 

system can be succ inc t ly  formulated abs t rac t ly  (e.g., see [5], 193, [12], [14]) 

i n  a manner t h a t  f a c i l i t a t e s  convergence analyses f o r  approximation schemes. 

While we s h a l l  not  pursue a convergence analysis i n  t h i s  paper, i t ' i s  con- 

It has been understood f o r  some time t h a t  we are i n  t h i s  case 

This 

venient i n  discussing our numerical methods and r e s u l t s  t o  use t h i s  formulat ion 

and the corresponding notat ion.  

To t h i s  end, we l e t  

. where x i s  the so lu t i on  o f  (2 .2 ) ,  (2 .3) .  Define Z t o  be the product space 

Rn x L;(-r,O). w i t h  the usual product H i l b e r t  space topology (and inner  product) 
1 and l e t  D(A) E {(s,4l € Z: 6 = 4(0), 4~ H (-r,O)} be the domain f o r  the l i n e a r  

operator A given by A ( + ( O ) , $ )  = CLg,;). 

the l i n e a r  operators Q : Z + Z and 8 : Rm + Z by Q({,4) = (Qo{,O) and 

Bv = (Bov,O). 

be reformulated as the equivalent problem o f  minimizing 

Recal l ing (2.1) and (2 .2) ,  we def ine 

Then our o r i g i n a l  optimization problem f o r  (2 .1 )  - C2.3) can 

over u € L2 subject  t o  the evo lu t  

(2.71 ;(t) = Az(.t) + Bu t t ) ,  

+ u ( t )Ru( t ) )d t  

on equation cons t ra in t  
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It i s  known [5], [9] t h a t  A generates a Co-semigroup { S ( t ) )  o f  so lu t i on  

operators and tha t  z defined by (2.5) i s  the unique mi ld  so lu t i on  of (2.7), 

(2.8). That i s ,  z i s  given by 

t 
(2.9) Z ( t )  = S(t)Zg + S(.t-a)BCl(a)da. 

0 

If we def ine an admissible cont ro l  f o r  our problem corresponding t o  the 

i n i t i a l  condi t ion Z ~ E Z  t o  be an m-vector func t ion  u which i s  in tegrab le  on 

( O p )  

operators Qo and L are such t h a t  any admissible contro l  corresponding t o  the  

i n i t i a l  condi t ion z o € Z  dr ives the r e s u l t i n g  so lu t i on  o f  t he  s ta te  equation 

(2.7) t o  zero asymptotically,then we may use r e s u l t s  due t o  Gibson [14] t o  

character ize the so lu t i on  t o  the  problem i n  feedback form. 

i f  there e x i s t s  an admissible cont ro l  corresponding t o  each i n i t i a l  cond i t ion  

zOCZ ( o r  equiva lent ly  the system (2.7) i s  s tab i l i zab le ,  see d e f i n i t i o n  2.3 

and c o r o l l a r y  4.1 of [14]), then there e x i s t s  a nonnegative, se. l fad jo in t  l i n e a r  

operator 

and fo r  which J(u;z&is f i n i t e ;  and i f  we make the assumption t h a t  the  

More prec ise ly ,  

on Z which s a t i s f i e s  the R icca t i  a lgebra ic  equation 

Moreover, under the assumption made above there e x i s t s  a t  most one such so lu t i on  

and the unique so lut ion t o . t h e  problem (2.6) - (2.8) can be given i n  feedback 

form by 

and 
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The operator 7 can be w r i t t e n  as a matrix o f  l i n e a r  operators 

where Too : Rn + Rn and 

se l fad jo in t ,  TIo f L;xn (-r,O) and To’ = TIo* w i t h  

: L:(-r,O) + L;(-r,O) are nonnegative and 

10 T 
(2 .12)  To’+ = f ( e )  +(e)de, + E. L;(-r,O) . 

-r 

If we r e c a l l  the d e f i n i t i o n  o f  the operator l3 and assume t h a t  the system (2.7) 

i s  s tab i l izable, then under the assumption made above, (2.5), (2.11) and (2.12) 

y i e l d  t h a t  the unique so lu t i on  t o  the problem f o r  (2.1) - (2.3) i s  g iven i n  

feedback form by 

(2.13) i ( t )  = - R-’B:[Toox(t) + I 7 10 ( e )  T x(t+e)de] 
-r 

w i t h  (for zo = ( n , $ j j  

I 
That i s ,  t he  gains KO, K1 of (2.4) are given by R-lB; Too and R-lB;( 7 lo)  , 
respect ive ly ,  and can be obtained by solv ing the  R icca t i  equation (2.10). 
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3. THE APPROXIMATION SCHEME 

I n  t h i s  section we develop and discuss the implementation of a sp l i ne  

based computational scheme which y i e l d s  a sequence o f  f i n i t e  dimensional 

operators { TN} which approximate v, the so lu t i on  t o  the operator R icca t i  

a lgebraic equation given by (2..10). The ITN are found by so l v ing  standard 

mat r ix  R icca t i  algebraic equations, and are then used t o  construct  feedback 

cont ro ls  which approximate (2.11) and which produce near optimal performance by 

the system (2.7) (2.8) as measured by the funct ional  (2.6). 

The approach we take i s  based l a r g e l y  upon the sp l i ne  approximation 

framework developed i n  [ 9 ]  f o r  the approximation o f  so lu t ions  o f  l i n e a r  

func t iona l  d i f f e r e n t i a l  equations. We summarize b r i e f l y  the essent ia ls  af 

t h a t  development. Le t  ZN be a sequence o f  sp l i ne  based subspaces of 2 

sa t i s f y ing  ZNCD(A) N = 1, 2, ... . Let  PN : Z + ZN denote the corresponding 

sequence of orthogonal p ro jec t ions  o f  Z onto ZN computed w i t h  respect t o  the 

weighted inner  product .> on Z given by 
9 

< (s ,$ ) , ( s ,~ .J )>~  = nTc + +(e)T$(e)g(e)de 
0 

-r 

where 

- r < e <  - r  v- 1 - 1 

rl -r < e < -  

-rl < e 5 0. 

2 -  0- 1 

- V 
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Define the 1 inear operators AN and QN on zN and 8# : R"' -t zN by AN = P,+, 

BN = PNB and QN = P ~ Q ,  respectively, and l e t  ITN be a nonnegative selfadjoint 

solution t o  the Riccati algebraic equation i n  ZN given by 

The existence and uniqueness of solutions of (3.1), which are related t o  the 

existence and uniqueness of solutions of (2.10) and certain properties of the 

approximation scheme i t s e l f ,  will be discussed i n  section 5. 

however, we assume t h a t  for  a l l  N sufficiently large, a solution rN exists 

w i t h  TN - > 0 and Ti  = TN. 

For the present, 

The use of the weighted inner product < a , - > g  i n  place of the standard 

inner product on Z i n  computing the projections PN (and therefore the operators 

AN)  insures t h a t  the operators % satisfy a uniform dissipative inequality of 

the form 

and hence t h a t  the solutions of the finite dimensional ordinary differential 

equation i n i t i a l  value problem i n  ZN 

approximate the solution of (2.7),(2.8) (see [9]). 

convergence result which  forms the theoretical foundation for the schemes being 

developed here. 

I t  is  this fundamental 
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Since the domain of the opera tors  P i s  2 = Rn x L;(-r,O), the ope ra to r s  
N 

v N P N  can be wri t ten a s  the matr ix  of l i n e a r  ope ra to r s  given by 

00 11 
where the n x n matrix TN and TN : L:(-r,O) + L;(-r,O) are nonnegative and 

s e l f a d j o i n t ,  TN is an n x n matr ix  valued func t ion  w i t h  components i n  L2, 

and r, = TN w i t h  

10 

01 1 o* 

If the approximating optimal con t ro l s  i n  feedback form f o r  the problem involving 

(2.6) - (2.8) are defined by 

t h e n  the approximate so lu t ions  t o  our  problem take the form 

w i t h  the corresponding approximating optimal t r a j e c t o r i e s  being given by the 

so lu t ions  t o  

V 

(3.5) i ( t )  = (Ao - BoR- 1 BOTN T 00 ) x ( t )  + 1 Ajx( t - r j )  
j=1  

f o r  any i n i t i a l  conditions’ x(0)  = nE R n and xo = ,j, E L;(-r,O). 

the optimal c o s t  can be approximated by 

In add i t ion ,  
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(3.6) < T N P N ( ~ , J I )  P N ( s , J I ) >  

Equation (3.1) is an operator equation, and thus is  not suitable for 

computational purposes i n  i t s  present form. 

of (3.1) a basis for ZN must be chosen and matrix representations for  the 

operators A N ,  A N ,  8" 8,,, and QN w i t h  respect t o  this basis must be computed. 

The a d j o i n t  operators A and 8 (and therefore their approximations AN and BN) may 

be computed w i t h  respect t o  either the standard inner product on  2, <e,.>, or the 

weighted inner product < * , e >  

I n  order t o  f-ind the matrix form 

* * 

* * * * 

Indeed, the fac t  t ha t  
g'  

for a l l  z € Z implies t h a t  the abstract regulator problem given by ( 2 . 6 ) ,  (2 .7)  

and (2.8) can be formulated i n  the space Z using either inner product and s t i l l  be 

equivalent  t o  our or ig ina l  control problem. 

matrix representations for the operators AN and 8,,, are simplified i f  the 

inner product is  employed ( i n  this case of course i t  must also. be used i n  (3 .6)) .  

When the discrete delay part of L consists of only a single delay term ( i .e . ,  

v = 1 ) ,  then g(e) z 1 and the two inner products are the same. 

However, the expressions for the 
* * 

We shall outline the necessary procedure for f ind ing  matrix representations i n  

the case of "linear" or f i r s t  order spline functions; however the ideas presented 

are easily extended t o  the case of cubic  or higher order spline functions. 

For each N = 1 ,  2, . . . , and each 8 6 [-r,O], le t  

L o  otherwise 
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N r where t = - jN, j = 0, 1, 2, ..., N, and define ZN t o  be 
j 

Note t h a t  dimZN = n(N+1) and t h a t  ZN C D ( A )  as i s  requi red by the  theory out-  

l i n e d  above. 
N I f  the n x n(Nt1) mat r ix  func t ion  4 ( 0 )  i s  def ined by the  r e l a t i o n  

f o r  e 

Kronecker product, then an a r b i t r a r y  element i n  ZN, jN = (J ,  (0), J, ) can be 

represented by 

[-r,O],where In denotes the n x n i d e n t i t y  ma t r i x  and @ i s  the 
N N 

N N jN = ( J ,  (01, JIN) = (oN*(O)a, 4 a) 

f o r  sane vector  a € R  n(N+l). 

shown i n  [9] t h a t  the vector representat ion a f o r  i t s  p ro jec t i on  P N t  with 

respect t o  the 

For an a r b i t r a r y  element z = (n,$) E Z i t  i s  

inner  product def ined above i s  given by 

where the n(N+l) x n(N+l) nonsingular symnetric ma t r i x  KN i s  given by 

and the mapping hN: Z + R n(N+l) i s  def ined by 

-r 



1 5  

N This i n  t u r n  al lows f o r  the computation o f  the ma t r i x  representat ion A f o r  the 

operator AN , 

N - I  N (3.10) AN = ( K  \ H 

N N where K i s  given i n  (3.8) and the n(N+1) x n(N+1) ma t r i x  H i s  given by 

HN = hN(LaN, i N )  = 4 N T N  (0) (La ) + / O N  a (e) iN(e)g(e)de .' 
-r 

For the l i n e a r  sp l i ne  case i t  i s  not d i f f i c u l t  t o  compute the i nne r  products 
N N appearing i n  the de f i n i t i ons  of the matrices K and H a n a l y t i c a l l y ,  a t  l e a s t  

f o r  r e l a t i v e l y  simple forms of the operator L. The forms f o r  these matrices 

are given e x p l i c i t l y  ( i n  terms of the matrices A j = 0, 1, 2, ..., V, and 

the m a t r i x  func t ion  D appearing i n  the d e f i n i t i o n  of the operator L) i n  [9] 

and [lo]. 

j' 

* 
I n  order t o  compute the ma t r i x  representation AfN f o r  the operator 

^N -N we note t h a t  f o r  a r b i t r a r y  elements 4 and J, i n  ZN wi th  corresponding 

n(N+l)-vector representations a and B respectively, i t  fo l lows t h a t  

-r  

where the  n(N+1) x n(N+1) nonsingular ma t r i x  KN i s  given by (3.8). 
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Therefore, (3.10) imp1 i e s  tha t  

N T N  T ~ ~ N T N  T N T  N - 1 N  '(3.12) <AN4 AN Y J, ^N '9 = ( A a )  K 6 = a ( . ( K )  H )  K B = a ( H )  ( K )  K B  

N where r 
(K ) (H ) . Equation (3.12) impl ies t h a t  r = AN and 

i s  the l i nea r  transformation on ZN w i t h  mat r ix  representat ion 
N "  N T  N *  

N T  (3.13) A*N = ( K  ) (H ) 

o r  

N - '  N T N  (3 .14)  A*N = ( K  ) ( A  ) K . 

Since the operators BN : Rm -+ ZN and Q, : ZN -+ Z N .  are def ined by BNv = PN(BOV,O) 

and QN(rt,+) = PN(Qoq,O) respect ive ly ,  (3.7) and (3.9) imply t h a t  t h e i r  ma t r i x  

representations, B and (7 are given by N N 

(3.15) BN = (K N ) -1 4 N (0)TBo 

and 

N " N  T N (3.16) QN = ( K  cp (0) Qoo (0). 

* 
F ina l l y ,  B*N, the matr ix representat ion fo r  the operator BN,can be computed 

i n  a manner s i m i l a r  t o  the one used t o  compute AfN and i s  given by 

c 
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(3.17) BXN = B:aN(O) 

o r  

(3.18) B*N = (B N T N  ) K . 

%N If we l e t  P denote the mat r ix  representat ion f o r T N ,  the so lu t i on  t o  

the operator equation (3.1), the mat r ix  form o f  (3.1) i s  given by 

*N"N "N N "'N N -1 *N%N (3.19) A P + P A  - P B R  B P + Q N = O .  

N Premul t ip ly ing  by K and using (3.14) and (3.18), (3.19) becomes 

If the subs t i t u t i ons  PN = KN;N and CN = KNQN are made i n  the l a s t  equat ion 

above, a standard mat r ix  R icca t i  algebraic equation i n  Rn('+') f o r  P r e s u l t s  

and i s  g iven by 

(3.20) 

N 

N T N  " - 1  N T N  ( A  ) P + PNAN - P B R (B  ) P + $N = 0. 

N Equation (3.20) can be solved f o r  the matr ix P using standard computational 

techniques and r e a d i l y  ava i lab le  software packages (see [2] and [20]). 
N t h  Once P has been determined, a simple ca l cu la t i on  reveals t h a t  the  N 

approximating optimal con t ro l  f o r  our problem given by (3.4) takes the form 

(3.211 - uN(t )  = - [  R- 1 T N  Bo4 ( O ) ( K  N - ' N  ) P ( K  N - I N  ) 4 (0)TX(t )  

+ R- 1 T N  B04 (0)(KN)-'P N ( K  N - I N  ) (0 (e)Tx(t+e)g(e)de]. 
-r 
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Comparing (3.21) t o  ( 3 . 4 ) ,  i t  i s  immediately c lea r  t h a t  the approximating feed- 

back gains are given by - 

1 T N  N ‘ l N  N ’ l N  T (3.22) R - ’ B A T i o  = R- Boa (O)(K ) P (K ) @ (0) 

and I 
1 T N  N ‘ l N  N ‘ l N  T (3.23) R - ’ B g T A o ( = ) T  = R- Bo@ (O)(K ) P (K ) @ ( - )  g ( * )  .’ 

Using (3.6) and (3.11) we ob ta in  an approximation t o  the  opt imal value o f  the 

cost  func t iona l .  

we have 

F o r  a given se t  o f  i n i t i a l  condi t ions x(0) = q, xo = JI 

N where h i s  given by (3.9). 

The approximation scheme which was developed above i s  semi-di screte 

i n  nature i n  t h a t  the approach taken i s  based p r i m a r i l y  upon the approximation 

o f  t he  i n f i n i t e  dimensional s ta te  equation (2.7) i n  the space Z by a sequence 

o f  f i n i t e  dimensional ord inary d i f f e r e n t i a l  equations i n  ZN of the form (3.2). 

However i t  i s  also poss ib le  t o  develop a p a r a l l e l  theory which i s  based upon 

a f u l l  d i s c r e t i z a t i o n  o f  the op t im iza t ion  problem i n  the  s p i r i t  o f  the r e s u l t s  

presented i n  [23]. 

equation ( i n  i t s  in tegrated form (2.9))  i s  approximated by a f i n i t e  dimensional 

d i f fe rence equation i n  ZN r e s u l t i n g  i n  a f i n i t e  dimensional d i sc re te  steady 

s ta te  l i n e a r  regulator  problem which can be solved i n  feedback form using 

conventional methods, 

The cost func t iona l  (2.6) i s  d i sc re t i zed  and the s ta te  

We sketch b r i e f l y  the p a r t i c u l a r s  o f  such an approach. 
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Le t  the Nth approximating opt imizat ion problem be given by: 

-N 
Find a sequence {q}iZ0- o f  m-vectors i n  g2 such t h a t  ut minimizes 

subject  t o  

t = 1, 2 ,  ... (3.25) z ~ + ~  N = Pij(iAil) t t  N + I P  (&4 ) 8 u N N k 2  2 N N  N t  

where iN = 

defined above. 

Q N s  RN = i~ and P,,,, 8” QN, R and to are as they have been 

The r a t i o n a l  functions P..(z) and Pkg(z) are selected from 
1J 

among the en t r i es  i n  the diagonal or f i r s t  two subdiagonals o f  the Pad6 t a b l e  

o f  r a t i o n a l  func t ion  approximations t o  the exponential. 

The basis f o r  the const ruct ion o f  the approximation problems i s  the fac t  

t h a t  t he  v a r i a t i o n  o f  parameters form of the so lu t i on  t o  (3 .25) ,  (3 .26 )  

given by 
L 

i s  an approximation t o  (2.9) i n  the sense t h a t  

tfN an N -+ = uni formly i n  t f o r  t € (0, 1, 2 . .. [TI} fo r  any tf < 

the symbol [ a ]  denotes the greatest  integer less than or equal t o  u (see 

C231) 

where 



20 

The feedback form o f  the so lu t i on  ( i f  i t  e x i s t s )  t o  the corresponding 

approximating problem and the optimal value o f  the cost  func t iona l  are given 

bY 

t = 0, 1, 2, ... , 
and 

respect ively,  where the l i n e a r  operators FN : ZN -c Rm and vN : ZN + ZN are  

determined by solv ing the system o f  operator equations (see [20]) 

-h* 'L 
(3.30) FN = (RN .'LB;T$N) B N v N A N  

i n  the unknowns TN, xN and FN where XN = P ~ ~ ( H A ~ )  r and 'L B~ = BPkg(gAN)8N. r 

To a c t u a l l y  compute the optimal con t ro l  law, the  system (3.28) , (3.29) , 
(3.30) must f i r s t  be transformed i n t o  an equivalent mat r ix  formulat ion.  

Adopting the  convention that the symbol T w i l l  denote the  ma t r i x  representat ion 

fo r  the operator TN w i t h  respect t o  the l i n e a r  sp l ine  basis defined above, 

i t  i s  not  d i f f i c u l t  t o  show t h a t  the system (3.28), (3.29), (3.30) i s  equivalent 

t o  the system of matr ix equations given by 

N 

N T N N  ' N T N N  r N N  (3.31) PN = ( X  ) P X + ( F  ) R F + w K Q 
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" N  N (3.32) XN = iN - B F 

r N  W r r N  where PN = K N T N ,  

B and Q are given by (3 .8 ) ,  (3.10), (3.15) and (3.16) respect ive ly .  

= P. .(-A ), B = - P (-A ) B N ,  RN - r R  and KN, AN, 1J N , N k 2  N - T i  
N N 

Standard software packages can be used t o  solve the system (3.31), (3.32), 

(3.33), see for  instance [Z]. Once the matr ices F and P have been determined, 

t h e  Nth approximating so lu t i on  t o  our problem i s  given by 

N N 

(3.34) <N(t) = - FNPNZ(t) 

= - [F N (K N ) -1 (ON(0)Tx(t) + O F N (K N - I N  ) (0 ( ~ ) ~ x ( t + e ) g ( e ) d e ]  
-r 

o r  using the fact  t h a t r N P N  approx imatesT,  by 

I T  i d - 1 ~  N- IN = - [R- BO(K ) P (K  ) (0 (O)'x(t) 

1 T  N ' l N  N ' l N  T + 1 R- Bo(K ) P ( K  ) 4 ( e )  x(t+e)g(e)de]. 
-r 

The feedback gains KO and K1 i n  (2.4) are approximated by 

(3.36) F (K ) (0 (0) N N - 1 N  T 
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~ 

respect ive ly ,  if (3.34) i s  used and by 

1 T  N ' 1 N  N ' l N  (3.38) R- Bo(.K ) P (K  ) 4 (0 IT  

and .. 
(3.39) R- 1 T  Bo(K N - ' N  ) P ( K  N - ' N  ) 4 ( - ) T g ( - )  

i f  (3.35) i s  used. 

F i n a l l y  f o r  a g iven se t  of i n i t i a l  condi t ions x(0)  = n, xo = $ y  the  

optimal value o f  the cost  func t iona l  can be approximated using (3.27). 

(3.11) we f i n d  

(3.40) J(G; rly$) % [ ( K  h (n,$)1 P (K h (n,$) 

where h 

From 

N -1 N T N  N - 1 N  

N i s  given by (3.9). 

~~ ~ 
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4. NUMERI CAL RESULTS 

In this section we present, discuss and analyze numerical results obtained 

by using the linear spline based approximation schemes described above to 

compute feedback controls for several hereditary regulator problems of the 

form given in section 2. 

approximate solutions using the finite difference based AVE scheme discussed 

in [14]. We recall that for the semi-discrete spline scheme, the approximating 

feedback gains R-’BiTio and R o l B ~ ~ ~ o ( * ) T  are given by (3.22) and (3.23) 

respectively while for the AVE scheme they may be computed using the time 

invariant forms of (7.27) and (7.28) in [14]. 

For the purpose of comparison we have also computed 

For the fully discrete spline 

scheme, the approximating gains are given either by (3.36) and (3.37) or by 

(3.38) and (3.39). 

scheme based upon the AVE approximation. 

Analogous formulae can be derived for a fully discrete 

All computations were performed on a Control Data Corporation Cyber 170 

model 730 at the NASA Langley Research Center (LaRC) using software written in 

Fortran. 

algebraic equations (3.20) were solved using both an iterative Newton technique 

For the semi-discrete schemes, the approximating matrix Riccati 

as it is described in [16] and the Potter method (see [22],[20]) which involves 

the eigenvalueteigenvector decomposition of the 2n(N+1) x 2n(N+1) matrix 

kN where the matrices AN, BN and Q are as they were defined in section 3. 

implementations of the two methods we used are contained in ORACLS [2], a 

software package developed at LaRC for the design of multivariable control systems. 

The 
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Although the Newton algorithm performed well on the equations arising 

from both the spline and AVE schemes, the Potter method was the more efficient 

of the two, particularly for large values of N. 

of the Potter method however, requires that the matrix iN be diagonalizable. 

This additional requirement posed no difficulties for the spline schemes in any 

of the examples we considered. 

classes of problems (including those involving state equations o f  dimension 

greater than one of the form considered in E-xamples 4.2, 4.3 and 4.4 below) 

lead to iN which are non-diagonalizable (see [14] Theorems 7.11 and 7.12). 

this instance, if one wishes to use the Potter method to solve (3.20),the 

generalized eigenvectors of A must be computed. 

For the fully-discrete schemes, the system (3.31), (3.32), (3.33) was 

The ORACLS implementation 

On the other hand, for the AVE.scheme, certain 

In 

^N 

solved using an iterative Newton algorithm from the ORACLS package. 

We have included results for five examples. Example 4.1 involves a 1 

dimensional state equation while Examples 4.2 and 4.3 involve systems of 

dimension 2. 

section 1. 

mations, while in Example 4.5 the fully-discrete method was used to solve 

the scalar problem considered in Example 4.1. 

In Example 4.4 we consider the wind tunnel system described in 

Examples 4.1 - 4.4 were a1 1 solved using semi-discrete approxi- 

Example 4.1 

We consider the minimization of 

Qo 

(4.1) J(u;x(O),x,) = [x2(.t) + u2(t)]dt 
0 

subject to the scalar differential equation given by 
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00 
In this example, t h e T N  are scalars and have been tabulated for N = 4, 

10 
8, 16, and 32 i n  Table 4.1. 

been plotted fo r  the same values of N i n  Figures 4.1, 4.2, 4.3 and 4.4. 

TheTN ( 0 )  are scalar valued functions and have 

N AVE SPLINE 

4 2.8866 2.7940 

8 2.8476 2.8054 

16 2.8278 2.8084 

32 2.8182 2.8091 

TABLE 4.1 

00 
Although we do not have a true value for  , i t  is  immediately clear 

from Table 4.1 that the values computed u s i n g  the spline based scheme appear 

t o  have converged, while those computed by the AVE scheme are converging much 

more slowly. 
10 

t o T  

thatIToa = (0) ,  the requirement R ( T N )  C Z, C D(A)  

~ ~ o = T ~ o ( 0 )  for each N. However, because i n  the closed loop form of the 

state equation (see (3.5)) TN ( 0 )  appears i n  the form of the kernel of  an 

integral operator, the effect of the oscillations i s  minimized. 

The oscillatory behavior exhibited by the spline approximations 

is  a consequence of the fact  that while in-general i t  i s  not the case 
10 imposes the conditions 

10 

We selected the in i t ia l  data 

(4.3) x(0) = 0 xo(e) = sinae , -1 - < e < O ,  - 

and computed the trajectories which result when the approximating optimal 

feedback controls (computed using either the AVE or the spline approximation 

schemes) are applied t o  the system (4.2),  (4.3). Approximate values for  the 

cost functional (4 .1 )  were computed two ways: directly us ing  the approximating 
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4 

8 

16 

32 

optimal con t ro ls  (3.4) w i t h  the corresponding approximating optimal t r a j e c t o r i e s  

(3.5) i n  (4.1) and a lso v i a  (3.24). 

equation (3.5) was ca r r i ed  ou t  by f i r s t  d i s c r e t i z i n g  the i n t e g r a l  term and 

then applying a modified version o f  a Runge-Kutta method f o r  the  numerical 

so lu t i on  o f  ordinary d i f f e r e n t i a l  equation i n i t i a l  value problems. 

t h a t  the numerical i n teg ra t i on  method employed t o  compute these t r a j e c t o r i e s  

was completely independent o f  e i t h e r  o f  the approximation schemes used t o  

compute the approximating feedback operators, and thus should no t  have biased 

our resu l ts .  For N = 4, 8, 16, and 32 the approximating optimal t r a j e c t o r i e s  

are p l o t t e d  i n  Figures 4.5, 4.7, 4.9 and 4 . l l w h i l e  the open loop form o f  the  

approximating optimal con t ro ls  are p l o t t e d  i n  Figures 4.6, 4.8, 

The approximating values f o r  the cost  func t iona l  are tabulated i n  Table 4.2 

where columns 1 and 3 contain the values computed d i r e c t l y  and columns 2 and 4 

the values computed using (3.24). 

The i n t e g r a t i o n  o f  the closed loop s t a t e  

We note 

4.10 and 4.12. 

.3309 .2809 .3272 .2484 

.3281 .3000 .3271 .3027 

.3275 .3121 .3272 .3163 

.3274 .3191 .3273 .3196 

N AVE SPLINE 

TABLE 4.2 

We have a l so  computed t r a j e c t o r i e s  and con t ro l s  f o r  the system (4.2) 

w i t h  the i n i t i a l  data 

. 
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4 

8 

16 

32 

x (0)  = 0 

.2036 .1724 

.2017 .1840 

.2013 .1914 

.2012 .1959 

The r e s u l t i n g  values o f  the cost  funct ional  (4.1) are given i n  Table 4.3. 

.2015 .1972 

,2012 .1972 

,201 2 .1974 

.2012 .1975 

TABLE 4.3 

Based upon the numerical r e s u l t s  f o r  the examples presented above and 

several others which we have considered, the fo l lowing observations concerning 

the r e l a t i v e  performance o f  the AVE and Spl ine based schemes can be made. 

( I )  The sp l ine  scheme converges faster and i s  more accurate a t  low 

orders. The AVE approximations generate a scheme t h a t  appears 

t o  converge l i k e  1/N whi le  t h a t  f o r  the sp l ines i s  l i k e  1/N . 
This i s  not  unexpected, given our experience w i t h  the AVE and 

sp l i ne  approximations i n  other contexts (e.g., see [5], [9], 

[7]). 

func t iona l  values obtained using the sp l i ne  approximations 

w i t h  N = 4 are compet i t ive with the r e s u l t s  produced by the 

AVE scheme with N = 16. 

2 

Furthermore, the t ra jec to r ies ,  cont ro ls ,  and cos t  

The computational e f f o r t  and expense 



32 

involved in solving a high order Riccati equation makes this an 

important consideration. 

amount of CPU time required to solve (using the Newton algorithm) 

the 5 dimensional Riccati equations (corresponding to n = 1 and N = 4) 

was on the order o f  1.0 seconds while the 17 dimensional equations 

(n = 1, N = 16) required approximately 70 seconds. 

In the scalar examples we tested the 

. 

(11) If the value of the cost functional J computed using the 

approx ima t i ng optima 

used as a measure of 

mation methods, then 

preferable. The spl 

control and the resulting trajectory is 

the relative performance of the two approxi- 

we found that the spline based technique is 

ne approximations consi stantly produced a 

smaller value for J(iN;x(O),x0) than did the AVE scheme. 

Similar conclusions can be drawn in the case of higher dimensional equations. 

Numerical results for two second order equations are presented in Examples 

4.2 and 4.3 below. 

matrix valued functionsTN ( 0 )  was the same as already depicted here in 

the 1 dimensional cases, for the 2 dimensional examples we present only the 
00 computed values for the 2 x 2 matrices TN . 

Since the qualitative behavior of each component of the 
10 

Example 4.2 

We consider the problem of minimizing 

OD 

(4.4) J(u;y(O),yo,i(o),yo) = 1 [y(t)2 t i(t)' + ~(t)~]dt 
0 

subject to the harmonic oscillator with delayed restoring force given by 

(.4.5) y(t) t y(t-1) = u(t). 

c 



If we define x(t) by 

then (4.4) and (4.5) are equivalent to 

J(u;x(0),xo) = [x(t)'x(t) + u(t)']dt 
0 

respectively. 
00 

The values for vN with N = 4, 8, and 16 obtained using the AVE and 

spline schemes are given in Table 4.4 below. 

N AVE SPLINE 

- 2.81 79 1.2816 1 . [ :::::: 1=4222 I. 9590 I 1.2816 1.8876 
4 

1 2.9276 1.3454 

1.3454 1.9211 

2.9920 1.3814 1 
1.3814 1.9398 

16 

1 3.0658 1.4210 

1.4210 1.9596 

1 3.0655 1.4207 

1.4207 1.9599 

TABLE 4.4 
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4 

a 
16 

Table 4.5 contains ( in  columns 1 and 3) t he  values o f  the cos t  f u n c t i o n a l  

(4.4) which were obtained when the approximating feedback c o n t r o l l e r s  were 

J(XCGN) 1 <TNPNZO~ P Z >  N o J0q.J 1 <ITNPNzo 9 PNzo> 

3.2861 3.1700 3.2750 3.3857 

3.2771 3.21 65 3.2748 3.3693 

3.2751 3.2407 3.2747 3.3659 

appl ied t o  the system (4.5) together w i t h  the i n i t i a l  condi t ions 

TABLE 4.5 

Example 4.3 

I n  t h i s  example we again consider the min imizat ion o f  (4.4), however t h i s  

t ime subject  t o  the harmonic o s c i l l a t o r  w i t h  delayed r e s t o r i n g  f o r c e  and 

delayed damping given by 

(4.6) i ( t )  + j ( t - 1 )  i. y ( t -1 )  = u(.t) 

or, equ i va 1 e n t  1 y 



00 
The values O f T N  f o r  t h i s  example are given i n  Table 4.6 below. . 

N AVE SPLINE 

1 1.9849 1.1248 ] [ 2.1419 1.2952 [I 1.1248 1.6538 1.2952 1.853528 
4 

8 1 2.051 1 1.1991 ] [ 2.1394 1.296 

1.1991 1.7432 1.296 1.8568 

1 2.0914 1.2440 ] [ 2.1389 1.2963 

1.2440 1.7965 1.2963 1.8576 
16 

TABLE 4.6 

00 
We note t h a t  using the AVE scheme, Gibson [14] compu tedTZ2  t o  be 

I, 1.2574 

L 1.2574 1.8123 

w i t h  the convergence being monotonic from belxo\l. i n  each component o f  the 

matr ix .  

The values o f  the cost  funct ional  (4.4) evaluated using the t r a j e c t o r i e s  

obtained by i n t e g r a t i n g  (4.5) w i t h  u given by (3.4) and i n i t i a l  condi t ions 

2 (  e + l  ) - l ~ e c - ~  1 

1 
Y ( 0 )  = 0 

- 28 - p e ~ O  
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4 

j(0) = - 2 

are g i v e n  i n  Table 

14.4103 11.2650 14.2383 13.8926 

i(e) = 

4.7. 

8 

16 

N 

14.2493 12.3886 

14.2165 13.0784 

2 - l ~ e ~ - ~  1 

- 2  - q l e c O  1 

.. VE SP I 

14.2201 1 3.8045 

14.21 60 13.8308 

TABLE 4.7 

Example 4.4 

In this example we inves t iga te  the Mach no. control loop problem described 

Recall t h a t  when the guide vane angle ac tua tor  is  the i n  the introduction. 

control ,  the s ta te  of the system i s  governed by an equation i n  R of the form 3 

1 -- 
i ( t )  = [ 0’ 

0 

0 

0 
2 

-w  

k 

0 

0 

- 
‘I 

0 .] x(t- .33) + [;j u ( t ) .  

0 

T Here x = (6M, 68, 66) 

variat ion i n  g u i d e  vane angle  68, and the var ia t ion  i n  guide vane angle 

veloci ty  S i ,  u = deA i s t h e g u i d e  vane angle actuator i n p u t  and the parameters 

T, W ,  r , and k take on the values 1.964 sec., 6.0 rad/sec. ,  .8, and -.0117 deg” 

respect ively [3]. 

i s  made up of the var ia t ion  i n  Mach no. 6M, the 
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Parametric s tud ies [3] on the  elements o f  the s t a t e  weight ing m a t r i x  

in t he  cost  f unc t i ona l  revealed t h a t  i f  J was chosen as 

W 1 

4 where Qo = d i a g ( l 0  ,O,O), then the  r e s u l t i n g  c o n t r o l  gains, upon simulat ion,  

produced responses which t y p i c a l l y  d i d  n o t  exceed the  phys ica l .  l i m i t a t i o n s  of 

t he  system. 
00 

The values f o r  t h e  matrices'TT,,, computed using t h e  A V E  and s p l i n e  schemes 

f o r  N = 2, 4, and 8 are given i n  Table 4.8. 

the Newton i t e r a t i o n  d i d  not  converge t o  a s o l u t i o n  o f  t he  m a t r i x  R i c c a t i  

equation. 

For the A V E  scheme w i t h  N = 8, 

Once again the values computed using the s p l i n e  approach appear t o  

have converged. 

N AVE SPLINE 

1 6228.0114 -29.9732 -2.8990 

-25.9732 .os: 5 . GO52 1 -2.8990 .0052 ,0005 

2 

625% 9665 -29.8569 -2.8858 

-29.8569 .0532 .0054 c -2.8858 ,0054 .0006 

4 

8 

1 2631 4.4858 -29.7940 -2.8708 

-29.7940 .0560 .0056 

.0056 ,0006 

r 
1 -2.8708 

-29.7558 -2.871 2 

-29.7558 0561 .0056 

-2.8712 ,0056 .0006 

-29.7459 -2.8716 . I -29.7459 ,0561 .0056 

-2.8716 0056 ,0006 

TABLE 4. a 
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2 

4 

8 

Using the approximating feedback c o n t r o l  laws we computed t r a j e c t o r i e s  

f o r  the problem o f  d r i v i n g  6M from -.l t o  0.0 (corresponding t o  M .varying 

from .8 t o  .9) and 68 from 8.55 t o  0 (corresponding t o  the  guide vane angle 

vary ing from 10.48' t o  a steady s t a t e  o f  1.93'). 

the guide vane angle ve loc i t y ,  s'e(0) was s e t  t o  0. 

t h e  cost  f unc t i ona l  are given i n  Table 4.9. 

angle t r a j e c t o r i e s  produced by the approximating con t ro l  gains computed us ing 

the  s p l i n e  scheme wi th  N = 8 a re  p l o t t e d  i n  Figures 4.13 and 4.14, respect ive ly .  

Our r e s u l t s  compare favorably w i t h  those obtained by Armstrong and T r i p p  [3] 

using an approximating feedback con t ro l  law produced by a f i n i t e  d i f f e r e n c e  

technique and w i t h  those obtained by Daniel [ l l ]  using a s p l i n e  based 

approximation scheme t o  solve a s i m i l a r  problem i n  open loop form. 

The i n i t i a l  v a r i a t i o n  i n  

The r e s u l t i n g  values f o r  

The Mach no. and guide vane 

41 4.371 408.0646 

414.3612 410.6452 

- 7 

41 4.350 435.8053 

41 4.3496 435.91 28 

41 4.3495 436.0064 

TABLE 4.9 

Example 4.5 

I n  t h i s  example we apply the f u l l y  d i s c r e t e  method discussed a t  t he  end 

of sect ion 3 t o  the scalar  problem considered i n  Example 4.1. 

gains were computed by so l v ing  the  system (3.31), (3.32), (3.33) where the  

The feedback 

%N and B were constructed us ing the  (9, 9) Pad; approximant together 

. 
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FIGURE 4.13 
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- 2 . 0  
- 3 . 0  

FIGURE 4.14 
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w i t h  the m a t r i x  representat ion fo r  the operator AN w i t h  respect t o  e i t h e r  the 

AVE o r  l i n e a r  sp l ine basis. r N  The matr ices Pg9(8A ) were computed using the  

r o u t i n e  EXPADE i n  the ORACLS l i b r a r y .  

Approximating feedback gains were computed using both the  operator FNPN, 
1 *  as i n  (3 .34) ,  and the operator .R- 8 T N P N  as i n  (3 .35) .  

approximations t o  Kg i n  (2 .4 )  are given i n  Table 4.10 and Table 4.11, respect ive ly .  

The r e s u l t i n g  

N 

4 

8 

16 

32 

- 

N 

4 

8 

16 

32 

- 

AVE 

2.4086 

2.5898 

2.6940 

2.7500 

TABLE 4.10 

AVE 

3.0763 

2.9257 

2.8629 

2.8348 

TABLE 4.11 

SPLINE 

2.3437 

2.5550 

2.6764 

2.7414 

SPLINE 

2.9556 

2.8768 

2.8418 

2.8253 

The approximations t o  K1 behaved q u a l i t a t i v e l y  i n  a manner s i m i l a r  t o  t h e i r  

behavior i n  the semi-discrete case; o s c i l l a t o r y  f o r  the l i n e a r  s p l i n e  scheme, 

and smooth fo r  the AVE scheme (see Figures 4.1 - 4.4) .  

the convergence appears t o  be slower f o r  the f u l l y  d i s c r e t e  schemes than f o r  

the semi-discrete schemes. 

For both KO and K1 
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.3314 ,2859 

.3283 ,3013 

,3275 .3124 

.3274 .3192 

I n  order t o  compare the r e l a t i v e  performance o f  the f u l l y  d i s c r e t e  and 
a 

semi-discrete methods, the two con t ro l  laws, (3.34) and (3.35), and the s p l i n e  

.3276 .2520 

.3273 ,3039 

.3273 .3166 

.3273 .3197 

and AVE schemes, we have computed t r a j e c t o r i e s  corresponding t o  the i n i t i a l  

cond i t i ons  (4.3) and tabulated the r e s u l t i n g  values o f  the cos t  funct ional  

computed both d i r e c t l y  and using (3.40). 

law (3.34) are given i n  Table 4.12 while those obtained using con t ro l  law 

(3.35) a re  given i n  Table 4.13. 

Our r e s u l t s  corresponding t o  c o n t r o l  

4 

a 
16 

32 

TABLE 4.13 
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Our numerical results for the fully discrete schemes appear to point to 

th, following conclusions: 

( I )  For low order approximation (i .e. , N small) the results produced by 

the semi-discrete schemes are better than those produced by the 

fully discrete methods. 

yield comparable results. 

For N large, using an iterative Newton algorithm, the ORACLS 

package was able to solve the system (3.31), (3.32), (3.33) arising 

As N increases, however, the two techniques 

( 1 1 )  

in the fully discrete methods in roughly half the time it required 

to solve the matrix Riccati algebraic equation (3.20) resulting 

from the semi-discrete approximation schemes. 

As measured by the magnitude of the cost functional corresponding 

to a given set of initial conditions and the rate of convergence 

o f  the approximating feedback gains, control law (3.35) is preferable 

to control law (3.34). 

Using the same criteria as in ( 1 1 1 ) ,  for the fully discrete schemes, 

as was the case with the semi-discrete schemes, the spline approxi- 

mations out-perform the AVE approximations. 

( 1 1 1 )  

( I V )  
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5. THEORETICAL CONSIDERATIONS AND FURTHER REMARKS 
a 

We t u r n  t o  a b r i e f  discussion of the convergen exh ib i ted  by the "gain" 

. operators i n T r d P N .  

reveals t h a t  numerical ly one has weak convergence OfTNPN, strong ( L ~ )  con- 

vergence of the approximating feedback contro l  s {uN) of (3.4) and convergence 

o f  t he  performance measures (3.6) and J(LN;x(0) ,x,). We have a c t u a l l y  proved 

the weak convergenceT,,,PNA i n  ce r ta in  special cases t h a t  inc lude scalar  

and second order examples such as those considered i n  sect ion 4. 

prec ise ly ,  if we consider a heredi tary  system o f  the form (1.1) and assume 

( i )  Range (Bo) 3 Range (A1), 

then { n N P N )  i s  uniformly bounded i n  L(Z). 

s i m i l a r  t o  those invoked by Gibson [14, 563, e s t a b l i s h  weak convergence of 

the sequence. 

i s  s t a b i l i z a b l e ,  ( i v )  

dr ives the s t a t e  t o  zero asymptot ical ly,  and ( v )  

there e x i s t  s e l f - a d j o i n t  nonnegative solut ions v, o f  the approximate R i c c a t i  

a lgebra ic  equations ( 3 . 1 ) ,  then arguments s i m i l a r  t o  those i n  [14] (see 

Theorem 6.7) can he made t o  obta in  T N P N d  v. 

Careful study of the numerical examples i n  sec t i on  4 

More 

(Ao, Bo) i s  a c o n t r o l l a b l e  system and ( i i )  

One can then, under assumptions 

For example, i f  we fu r the r  assume (iii) the he red i ta ry  system 

Q,, Ao, A1, Bo are such t h a t  any admissible c o n t r o l  

f o r  N s u f f i c i e n t l y  large, 

I f  we are w i l l i n g  t o  assume t h a t  Gibson's Conjecture 7.1 ( e s s e n t i a l l y ,  

t h a t  the approximation scheme when applied preserves uni form asymptotic 

s t a b i l i t y  possessed by any o r i g i n a l  heredi tary  system) holds f o r  the s p l i n e  

schemes (an assumption t h a t  Gibson makes f o r  the "averaging" scheme and one 

which, based on spect ra l  considerations, we f e e l  conf ident i s  v a l i d  f o r  both 

schemes), then we can guarantee existence o f  so lu t ions TN o f  the approximate 

R i c c a t i  equations (3.1) and furthermore, boundedness o f  { n N P N l  

imnediately (e.g., see Theorem 7.5 of [141). 

fo l lows 
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With respect t o  the question o f  strong o r  t race  norm convergence o f  

{ v N P N }  , we note t h a t  Gibson [14] obtains such convergence f o r  the averaging 

scheme. 

vergence o f  the payoffs. 

and 6.9) i s  the r e s u l t  S N ( t )  -t S * ( t j  where { S ( t ) }  i s  t he  s o l u t i o n  semigroup 

f o r  t he  o r i g i n a l  heredi tary system(2.2) w i t h  u = 0 and { S N ( t ) }  i s  the s o l u t i o n  

semigroup f o r  t he  approximating system (e.g., (3 .2) )  w i t h  u = 0. 

This i n  turn (see Theorem 6.8 and sect ion 7 of [14]) y i e l d s  con- 

Fundamental t o  G i  bson's arguments (see Theorems 6.1 
* 

For our 

I sp l i ne  schemes we don ' t  be l ieve arguments s i m i l a r  t o  those o f  Gibson w i l l  

su f f i ce  t o  ob ta in  t h i s  strong convergence o f  ad jo in ts ;  s p e c i f i c a l l y ,  we d o n ' t  

be l ieve t h a t  AN -f A 

o f  SN. 

o f  {VNPN} f o r  the sp l i ne  schemes. 

doubt strong convergence although we 3 observe the desired convergence o f  t he  

payoffs and can ac tua l l y  es tab l i sh  t h i s  t h e o r e t i c a l l y  f o r  our s p l i n e  schemes. 

I f  strong convergence o f  { T N P N }  i s  t rue,  we bel ieve a theory somewhat d i f -  

f e r e n t  f rom t h a t  o f  Gibson's w i l l  be requi red t o  e s t a b l i s h  t h i s .  

regard we fu r the r  note t h a t  Kunisch, i n  h i s  i n v e s t i g a t i o n  [19] o f  both the 

sp l i ne  and averaging schemes f o r  the f i n i t e  i n t e r v a l  i n t e g r a l  quadrat ic  cost  

con t ro l  problem f o r  systems with delays, obtains convergence o f  t h e  payoffs 

and con t ro l s  and weak convergence o f  the associated t ime dependent R i c c a t i  

operators i n  a theoret ica l  treatment t h a t  i s  independent o f  a d j o i n t  convergence 

considerations. However, even i f  t h i s  theory could be extended t o  t r e a t  the 

i n f i n i t e  i n t e r v a l  regu la to r  problems, i t  would no t  appear t o  y i e l d  the stronger 

convergence r e s u l t s  f o r  T,P,}. 

* * 
i n  a mode s u f f i c i e n t  t o  y i e l d  the requi red convergence 

* 
A t  t h i s  t i m e  we honestly don ' t  know whether we have strong convergence 

From our numerical r e s u l t s  we tend t o  

. 
I n  t h i s  

I n  a d d i t i o n  t o  our numerical f indings, there i s  o t h e r  evidence t h a t  appears 

t o  cast  doubts on the p o s s i b l i l t y  of strong convergence o f  E T N P N l .  Recall  
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t h a t  ZNC D ( A )  f o r  each N and since i n  the representat ion 

T N P N  

the f i r s t  column i s  " i n "  D ( A ) ,  we must have Ti0 = T A o ( 0 ) .  The components 

of 7 do no t  s a t i s f y  such a boundary condit ion. 

col  ( Too, T I O )  i s  ' ' in" D(A* ) .  This suggests t h a t  t he  convergence o f  

Indeed (.see [14, Theor. 4.41) 

n N P N  t o  T , c a n n o t  occur i n  a very strong mode, 

The t h e o r e t i c a l  considerations above aside, we bel ieve the evidence i s  

q u i t e  substant ia l  i n  support o f  our contention t h a t  the s p l i n e  methods o f f e r  

an a t t r a c t i v e  means f o r  computing feedback gains i n  delay system regu la to r  

problems. We close w i t h  a summary o f  remarks on the m e r i t s  of our s p l i n e  

schemes over the averaging scheme (we don ' t  mean t o  d i s c r e d i t  the averaging 

technique - f o r  many problems it should perform q u i t e  admirably - r a t h e r  we 

wish t o  argue t h a t  i n  some examples, the s p l i n e  schemes can of fer  s i g n i f i c a n t  

improvements). We r e c a l l  from the numerical r e s u l t s  of sect ion 4 t h a t  

(on these examples) the l i n e a r  sp l i ne  scheme always i s  as good as the 

averaging scheme, i n  some cases i t  i s  be t te r  ( f a s t e r  convergence, b e t t e r  

approximation a t  low orders). I n  same s i t u a t i o n s  the  averaging scheme f a i l s  

. numerical ly t o  converge, whi le  t h i s  never ( i n  our experience) occurs w i t h  

the s p l i n e  schemes. 

As fu r the r  evidence o f  the usefulness o f  the s p l i n e  schemes, we of fer  

the recent experiences o f  Gibson (p r i va te  communication) and I t o  [21] i n  

using the averaging and s p l i n e  approximation schemes as a basis fo r  
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computation of closed loop eigenvalues f o r  delay systems (e.g., using the 

system (3.21, (3.3) t o  compute eigenvalues t h a t  approximate those o f  the 

feedback system ( 2 . 2 ) ,  (2.13)). I n  these e f f o r t s ,  the s p l i n e  based schemes 

performed i n  a f a r  super ior  manner. We i n t e r p r e t  t h i s  as another argument 

i n  favor  o f  construct ion o f  feedback gains v i a  our s p l i n e  schemes. 
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